eCO₂-mb Sensor

- Modbus RTU communication interface
- One analog output for 2...10 V
- Optional LED indicator for local monitoring
- 0-5000 ppm detection rate with \pm 50ppm \pm 5% of reading value maximum error (NDIR¹)
- USB 5VDC or 24VDC powering options (for 2...10V output device needs to powered by 24VDC)
- Built-in temperature and humidity sensors ($\pm 3\%$ RH and ± 0.3 °C)
- 1) NDIR = None dispersive infrared

Use

 eCO_2 -mb sensor is designed for local (via LEDS and 2...10V) monitoring of CO_2 levels in closed environments.

- eCO₂-mb can be connected to any modbus controller easily, meaning it can be used by building automation systems.
- Optional LED indicators designed to easily monitor CO₂ density locally, if required.

The sensor acquires:

- The CO₂ concentration of the room it is placed in.
- The relative humidity of the room.
- The temperature of the room.

Typical use:

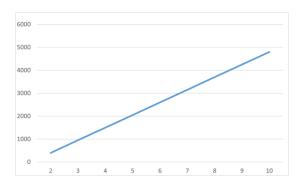
 Monitoring closed environments ventilation using CO₂ concentration of the said closed space, such as a classroom, a shop, movie theatre etc.

Important!

The eCO₂ sensor is not suitable for safety uses.

Ordering

When ordering please use eCO₂ as name.


If a PM2.5 version is required, use eCO₂-PM.

Equipment Combinations

The eCO $_2$ sensor is capable of working with any systems or devices that can acquire and handle 2...10V signal, modbus communication or it can be used as a stand-alone device.

Mode of Operation

 eCO_2 sensors acquire CO_2 concentration using a system called NDIR. This system allows the sensor to be used for years before requiring a recalibration or service. The 2...10V DC output signal is linear, proportional to the CO_2 concentration.

Mechanical Design

The sensor is designed for wall mounting, around 1.5 meters above ground where it won't be in direct contact of sunlight or near a heat source, and away from air flow. The cables required enter the device from behind it, through the cabling holes.

The unit consists of three major sections; front cover, casing and the baseplate for wall-mounting. Front cover and casing can be attached together after the wiring via four screws, and baseplate can be attached to the casing using four more screws.

The measuring circuit and terminals are located on the PCB which is inside casing.

Engineering Notes

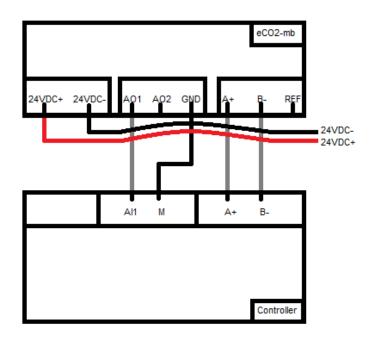
The sensor can be powered up by a 5VDC USB cable for desk use or it can be powered up with 24VDC via terminals. 5VDC USB cable will be enough to work Modbus interface but for 2...10V signal the sensor must be powered by 24VDC.

While cabling, electrical interference should be observed. If EMC problems are encountered, shielded cables should be used.

Mounting Notes

The sensor should be placed on the wall of the room that is to be monitored, but can also be placed on a desk and easily powered. It shouldn't be placed behind curtains or in small niches.

The sensor's functions can be checked after 10 minutes of powering up. In a well ventilated room the sensor should show the outside air's CO_2 concentration which should be close to 400ppm. A function check can be done by exhaling on the sensor.


Technical Data

Power Supply	Operating Voltage	5VDC USB or 24VDC Terminal
	Power Consumption	≤ 2.5VA
	Cable Lengths	Refer to Data Sheet of the
		device handling the signal
CO₂ Data	Measuring Range	4005000ppm
	Measuring Accuracy	\pm 50ppm \pm 5%
	Time Constant	< 5 min
	Recalibration Free	>5 years
Humidity Data	Measuring Range	0100%RH
	Measuring Accuracy	±3%RH
	Time Constant	< 2 min
Temperature Data	Measuring Range	0-65°C
	Measuring Accuracy	±0.3 °C
	Time Constant	< 2 min

Connection Terminals

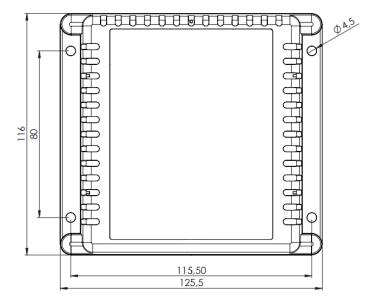
Terminal	Description
24V+	24VDC positive terminal
24V-	24VDC negative terminal
A+	Modbus positive terminal
B-	Modbus negative terminal
Ref	Modbus reference
AO1	210V Output
GND Analog Output Ground for Refere	

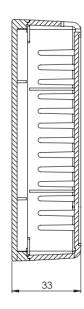
Visual Representation of Connection Terminals

Communication Parameters

Address	Range	Description
4x0001	400-5000	CO ₂ Density
4x0002	0-65	Temperature*
4x0003	0-100	Humidity*
4x0004	1-247	Modbus Address
4x0005	1-5	Baudrate ¹
4x0006	1-3	Parity ²
4x0007	1-2	Stop Bits ³
4x0008	0-1	Restart Device ⁴

^{*}Temperature and humidity data need to be divided by 100 to be usable.


¹ 1=4800bps, 2=9600bps, 3=19200bps, 4=38400bps, 5=115200bps


² 1=None, 2=Even, 3=Odd Parity

³ 1=1 Stop Bit, 2=2 Stop Bits

 $^{^4}$ 1=Restart, 0=Normal Work (Used to restart the device with the selected configuration after changes are made)

Dimensions in mm

